Generating Sentences from Disentangled Syntactic and Semantic Spaces

Yu Bao^{1*} Hao Zhou^{2*} Shujian Huang^{1†} Lei Li² Lili Mou³ Olga Vechtomova³ Xinyu Dai¹ Jiajun Chen¹ ¹National Key Laboratory for Novel Software Technology, Nanjing University, China ²ByteDance AI Lab, Beijing, China ³University of Waterloo, Canada {baoy, huangsj, dxy, chenjj}@nlp.nju.edu.cn {zhouhao.nlp,lileilab}@bytedance.com doublepower.mou@gmail.com, ovechtomova@uwaterloo.ca

ACL2019

紹介者: 三輪誠 (豊田工業大学) スライド中の図表は論文のものを利用しています

- VAEの潜在表現を構文的な表現と意味的な表現に分ける disentangled syntactic and semantic spaces of VAE (DSS-VAE)を提案
 - 文生成・言い換え生成で高い性能
 - スタイル変換 (syntax-transfer) も可能
 - Ref_{sem}の意味を保ちつつ, Ref_{syn}の構文に合わせる

Semantic and Syntactic Providers		Syntax-Transfer Output		
Ref _{syn} :	There is an apple on the table.	VAE:	The man is in the kitchen.	
Ref _{sem} :	The airplane is in the sky.	DSS-VAE:	There is a airplane in the sky.	
Ref _{syn} :	The shellfish was cooked in a wok.	VAE:	The man was filled with people.	
Ref _{sem} :	The stadium was packed with people.	DSS-VAE:	The stadium was packed with people.	
Ref _{syn} :	The child is playing in the garden.	VAE:	There is a person in the garden.	
Ref _{sem} :	There is a dog behind the door.	DSS-VAE:	A dog is walking behind the door.	

- disentanglement representation learningの研究が増えているのとVAEや生成をあまり知らないので読んでみた
 - タイトルにdisentangleがある今年の論文はNAACL6件, ACL7件, ICML6件, ICLR2件, CVPR8件, NeurIPS11件

DSS-VAE (disentangled syntactic and semantic spaces of VAE) のモデル

・文xは構文的な潜在変数 z_{syn} と意味的な潜在変数 z_{sem} から生成

$$p(\boldsymbol{x}) = \int p(\boldsymbol{z}_{\text{sem}}, \boldsymbol{z}_{\text{syn}}) p(\boldsymbol{x} | \boldsymbol{z}_{\text{sem}}, \boldsymbol{z}_{\text{syn}}) \, \mathrm{d}\boldsymbol{z}_{\text{sem}} \, \mathrm{d}\boldsymbol{z}_{\text{syn}}$$

 ・事前分布p(z_{syn})とp(z_{sem})は独立した正規分布 N(0,I)を仮定
 ・実験では100次元

• c.f. VAE
$$p(\boldsymbol{x}) = \int p(\boldsymbol{z}) p(\boldsymbol{x}|\boldsymbol{z}) \, d\boldsymbol{z}$$

DSS-VAEの目的関数

- ・以下の4つから目的関数を設定
 - 1. 変分下限 (ELBO; Evidence Lower BOund)
 - VAEの目的関数
 - 2. マルチタスク学習
 - •構文,意味それぞれのための補助タスク
 - 3. 敵対的損失
 - 構文と意味の表現を分離するための補助タスク
 - 4. 敵対的復元損失
 - 構文・意味単独では文を復元できないようにするための補助タスク

変分下限 (ELBO) の最大化 This is ... • VAE (文の復元)の目的関数 $\log p(\boldsymbol{x}) \geq \text{ELBO}$ $= \underset{q(\boldsymbol{z}_{\text{sem}}|\boldsymbol{x})q(\boldsymbol{z}_{\text{syn}}|\boldsymbol{x})}{\mathbb{E}} \left[\log p(\boldsymbol{x}|\boldsymbol{z}_{\text{sem}},\boldsymbol{z}_{\text{syn}}) \right] - \text{KL} \left(q(\boldsymbol{z}_{\text{sem}}|\boldsymbol{x}) \parallel p(\boldsymbol{z}_{\text{sem}}) \right) - \text{KL} \left(q(\boldsymbol{z}_{\text{syn}}|\boldsymbol{x}) \parallel p(\boldsymbol{z}_{\text{syn}}) \right) \right]$ •事後分布 $q(\mathbf{z}_{sem}|\mathbf{x})$ は正規分布 $\mathcal{N}(\boldsymbol{\mu}_{sem}, \boldsymbol{\sigma}_{sem}^2)$ を仮定. 分布パラメタ は入力をGRUでエンコードした r_x を等分割したものから計算 $\begin{bmatrix} \boldsymbol{\mu}_{\text{sem}} \\ \boldsymbol{\sigma}_{\text{sem}} \end{bmatrix} = \begin{bmatrix} W_{\text{sem}}^{\mu} \\ W_{\text{sem}}^{\sigma} \end{bmatrix} \operatorname{ReLU}(W_{\text{sem}}\boldsymbol{r}_{x}^{\text{sem}} + \boldsymbol{b}_{\text{sem}}) \quad \boldsymbol{r}_{x} = [\boldsymbol{r}_{x}^{\text{sem}}; \boldsymbol{r}_{x}^{\text{syn}}]$ • $q(\boldsymbol{z}_{syn}|\boldsymbol{x})$ も同様

マルチタスク学習

- •構文・意味をそれぞれの表現から予測する
- Bag-of-words分布の予測

$$\mathcal{L}_{\text{sem}}^{(\text{mul})} = -\sum_{w \in \mathcal{V}} t_w \log p(w | \boldsymbol{z}_{\text{sem}})$$

• (線形化された)構文情報の予測 🥢

$$\mathcal{L}_{\text{syn}}^{(\text{mul})} = -\sum_{i=1}^{n} \log p(s_i | s_1 \cdots s_{i-1}, \boldsymbol{z}_{\text{syn}})$$

敵対的損失

- •構文から意味, 意味から構文を生成できないようにする
- *P*adv はVAEのパラメタを固定して更新
 *P*adv の学習とVAEの学習を交互に行う(はず)

敵対的復元損失

• 片方の表現だけでは文を再現できないようにする

$$\mathcal{L}_{\text{rec}}^{(\text{adv})}(\boldsymbol{z}_s) = \sum_{i=1}^{M} \log p_{\text{rec}}(x_i | x_{< i}, \boldsymbol{z}_s) \quad (\boldsymbol{z}_s = \boldsymbol{z}_{\text{syn}} \text{ or } \boldsymbol{z}_{\text{sem}})$$

DSS-VAEの目的関数のまと	▲ KLのハイパーパラ sigmoid関数に従 (KL annealing)	
	β-V,	AEIJ β (= λ^{KL})>1
$\mathcal{L} = \mathcal{L}_{\text{vae}} + \mathcal{L}_{\text{aux}}$		
VAL	Hyper-parameters PTB	Quora
$= - \mathop{\mathbb{E}}_{q(\boldsymbol{z}_{\text{sem}} \boldsymbol{x})q(\boldsymbol{z}_{\text{syn}} \boldsymbol{x})} \log \left[p(\boldsymbol{x} \boldsymbol{z}_{\text{sem}}, \boldsymbol{z}_{\text{syn}}) \right]$	$\lambda_{sem}^{\mathrm{KL}}$ 1.0	1/3
$q(\boldsymbol{z}_{\text{sem}} \boldsymbol{x})q(\boldsymbol{z}_{\text{syn}} \boldsymbol{x})$	$\lambda_{syn}^{\mathrm{KL}}$ 1.0	2/3
+ $\lambda_{\text{sem}}^{\text{KL}} \text{KL} \left(q(\boldsymbol{z}_{\text{sem}} \boldsymbol{x}) \ p(\boldsymbol{z}_{\text{sem}}) \right)$	$\lambda_{sem}^{\text{mul}}$ 0.5	5.0
$+ \gamma_{\text{sem}} (q(\approx \text{sem}(\omega))) p(\approx \text{sem}))$	$egin{array}{cc} \lambda^{ m mul}_{syn} & 0.5\ \lambda^{ m adv}_{sem} & 0.5 \end{array}$	1.0
$+ \lambda_{\text{syn}}^{\text{KL}} \text{KL} \left(q(\boldsymbol{z}_{\text{syn}} \boldsymbol{x}) \parallel p(\boldsymbol{z}_{\text{syn}}) \right)$	$\lambda_{sem}^{ m adv}$ 0.5	0.5
	$\lambda_{syn}^{\mathrm{adv}}$ 0.5	0.5
+ $\lambda_{\text{sem}}^{\text{mul}} \mathcal{L}_{\text{sem}}^{(\text{mul})}$ + $\lambda_{\text{sem}}^{\text{adv}} \mathcal{L}_{\text{sem}}^{(\text{adv})}$ + $\lambda_{\text{sem}}^{\text{rec}} \mathcal{L}_{\text{rec}}^{(\text{adv})}(\boldsymbol{z}_{\text{sem}})$	$\lambda_{sem}^{ m rec}$ 0.5	1.0
	$\lambda_{syn}^{ m rec}$ 0.5	0.05
$+ \lambda_{\rm syn}^{\rm mul} \mathcal{L}_{\rm syn}^{\rm (mul)} + \lambda_{\rm syn}^{\rm adv} \mathcal{L}_{\rm syn}^{\rm (adv)} + \lambda_{\rm syn}^{\rm rec} \mathcal{L}_{\rm rec}^{\rm (adv)}(\boldsymbol{z}_{\rm syn})$	Batch size 32	50
	GRU Dropout 0.1	0.3
マルチタスク 敵対的損失 敵対的復元損失 学習		

言語生成

- PTBで実験
- KLのハイパーパラメタで決定的かどうかのトレードオフ

11

- Quoraデータセットを利用
 - 言い換えペア140k, 非言い換えペア260k (3kを開発, 30kをテスト)

- SNLI (1,000非言い換えペア) を利用
- "compatible"な文間であれば有望な結果

Semantic and Syntactic Providers		Syntax-Transfer Output		
Ref _{syn} :	There is an apple on the table.	VAE:	The man is in the kitchen.	
Ref _{sem} :	The airplane is in the sky.	DSS-VAE:	There is a airplane in the sky.	
Ref _{syn} :	The shellfish was cooked in a wok.	VAE:	The man was filled with people.	
Ref _{sem} :	The stadium was packed with people.	DSS-VAE:	The stadium was packed with people.	
Ref _{syn} :	The child is playing in the garden.	VAE:	There is a person in the garden.	
Ref _{sem} :	There is a dog behind the door.	DSS-VAE:	A dog is walking behind the door.	

- ・片方の表現だけ復元できないようにすると、反対の表現が強く
 なる
 - 両方を復元できないようにするとバランスの取れた表現

Tree edit distance

	word-BLEU (corpus)		Average TED (per sentence)		~
Model	Ref _{sem} ↑	Ref _{syn} ↓	Ref _{sem} ↑	Ref _{syn} ↓	Geo Mean Δ^{\uparrow}
VAE	6.81	6.68	149.22	148.59	0.29
$\mathcal{L}_{\text{sem}}^{(\text{mul})} + \mathcal{L}_{\text{syn}}^{(\text{mul})} + \mathcal{L}_{\text{sem}}^{(\text{adv})} + \mathcal{L}_{\text{syn}}^{(\text{adv})}$	12.14	6.22	159.51	134.80	12.09
$+\mathcal{L}_{ m rec}^{ m (adv)}(m{z}_{ m sem})$	11.83	6.60	163.40	131.27	12.96
$+\mathcal{L}_{ m rec}^{ m (adv)}(z_{ m syn})$	14.33	6.07	159.20	134.22	14.36
$+\mathcal{L}_{ m rec}^{ m (adv)}(z_{ m syn})+\mathcal{L}_{ m rec}^{ m (adv)}(z_{ m sem})$	13.74	6.15	161.94	131.09	15.30

Geo Meanは両評価のRef_{sem}-Ref_{syn}の平均

- ・構文表現と意味表現を分離するDSS-VAEを提案
 - ・3つの補助タスクにより分離を促進
 - VAEと違い、構文情報の操作により言い換え生成、 スタイル変換に利用可能
- 単語生成・言い換え生成・スタイル変換の3つのタスクで高い性能・有望な結果

Disentangled Representation Learning for Non-Parallel Text Style Transfer

Preliminary work rejected by EMNLP-18

Vineet John, Lili Mou, Hareesh Bahuleyan, Olga Vechtomova University of Waterloo 同じ著者 • style (sentiment) とcontentを分ける

 $J_{\rm ovr} = J_{\rm AE}(\boldsymbol{\theta}_{\rm E}, \boldsymbol{\theta}_{\rm D})$

VAE

 $+\lambda_{\text{mul}(s)}J_{\text{mul}(s)}(\theta_{\text{E}}, \theta_{\text{mul}(s)}) - \lambda_{\text{adv}(s)}J_{\text{adv}(s)}(\theta_{\text{E}})$ Sentimentの予測と敵対的損失

 $+\lambda_{\text{mul}(c)}J_{\text{mul}(c)}(\theta_{\text{E}}, \theta_{\text{mul}(c)}) - \lambda_{\text{adv}(c)}J_{\text{adv}(c)}(\theta_{\text{E}})$ BoW (感情語を除いた内容語)の予測と敵対的損失

Original (Positive)	DAE Transferred (Negative)	VAE Transferred (Negative)	
the food is excellent and the	the food was a bit bad but the	the food was bland and i am not	
service is exceptional	staff was exceptional	thrilled with this	
the waitresses are friendly and	the guys are rude and helpful	the waitresses are rude and are	
helpful		lazy	
Original (Negative)	DAE Transferred (Positive)	VAE Transferred (Positive)	
the desserts were very bland	the desserts were very good	the desserts were very good	
it was a bed of lettuce and	it was a beautiful setting and	it was a huge assortment of fla-	
spinach with some italian	just had a large variety of ger-	vors and italian food	
meats and cheeses	man flavors		