Duality of Link Prediction and Entailment Graph Induction

Mohammad Javad Hosseini* Shay B. Cohen* Mark Johnson and Mark Steedman*

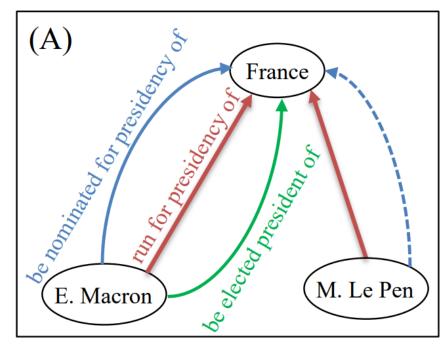
*University of Edinburgh The Alan Turing Institute, UK Macquarie University

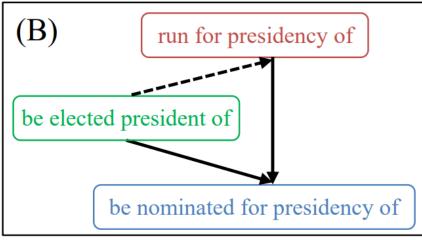
javad.hosseini@ed.ac.uk, scohen@inf.ed.ac.uk

mark.johnson@mq.edu.au, steedman@inf.ed.ac.uk

ACL2019

読み手:浅田真生(豊田工業大学)


2019/9/27

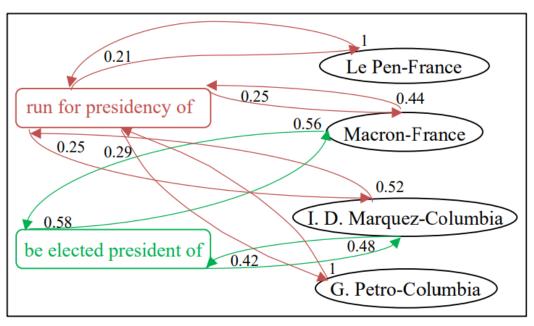

図は論文より引用

概要

Link Prediction (A)

- Entailment Graph Induction (B)
- 2つのタスクは通常異なるタスクとして 扱われるが、相関がある
 - 1. Graph entailmentにLink predictionのスコア を利用し精度向上
 - 2. 1で得たentailmentスコアを利用し、Link predictionの精度向上

Link predictionを用いたEntailmentスコア


 Knowledge graph上で予めノードとエッジのembeddingを計算 (本手法ではConvE [Dettmers+ 2018] を使用)

• Relationとentityペアで二部 グラフを作成

$$P(\langle e_1, e_2 \rangle \mid \langle r \rangle) = \frac{P(X_{r,e_1,e_2}=1)}{\sum_{e_1,e_2 \in \mathcal{E}^2} P(X_{r,e_1,e_2}=1)}$$

$$P(\langle r \rangle \mid \langle e_1, e_2 \rangle) = \frac{P(X_{r,e_1,e_2}=1)}{\sum_{r \in \mathcal{R}} P(X_{r,e_1,e_2}=1)}$$

$$P(\langle q \rangle | \langle r \rangle) = \sum_{e_1, e_2 \in \mathcal{E}^2} P(\langle q \rangle | \langle e_1, e_2 \rangle) P(\langle e_1, e_2 \rangle | \langle r \rangle)$$

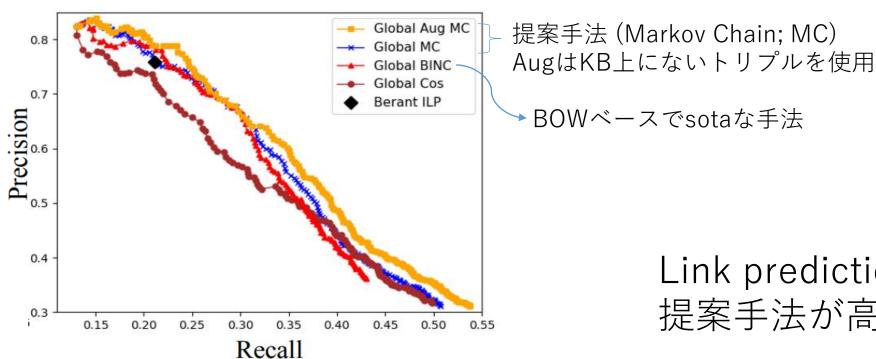
Markov Chain

Entailmentスコアを用いたLink prediction

- Distributional Inclusion Hypothesis (DIH) を仮定
 - $r \rightarrow q \Leftrightarrow r$ が使われうるすべてのコンテキストでqも使われる
- これをrelationに適用

$$r \rightarrow q \implies \forall (e_1, e_2) \in \mathcal{E}^2 : X_{r,e_1,e_2} = 1 \rightarrow X_{q,e_1,e_2} = 1$$

$$\implies X_{r,e_1,e_2} \le X_{q,e_1,e_2}.$$


つまり、 $r \rightarrow q$ ならば $P(X_{r,e_1,e_2} = 1) \leq P(X_{q,e_1,e_2} = 1)$ として、トリプル (q,e_1,e_2) のスコアを以下のように置き換える

$$S_{q,e_1,e_2}^{ent} = \max_{r \in \mathcal{R}: r \to q} S_{r,e_1,e_2}$$
 実際は $S_{q,e_1,e_2}^{ent} = \max \left(S_{q,e_1,e_2}, \sum_{r \in \mathcal{R}} W'_{r,q} S_{r,e_1,e_2} \right)$ ここで $S_{r,e_1,e_2} = P(X_{r,e_1,e_2} = 1)$

実験設定

- Knowledge graph
 - NewsSpikeコーパスから, Hosseini+ 2018がトリプルを作成した ものを使用 (3.9M relations)
 - 95%をTrain, 4%をDevelopとし, ConvEでembeddingを学習, チューニング
- 評価データ
 - Entailmentタスク
 - Levy/Holt's dataset [Levy and Dagan 2016, Holt 2018]
 - 18,407 examples (3,916 positive, 14,491 negative)
 - Link predictionタスク
 - Knowledge graph 𝒪 1%

結果: Entailment graph induction

Link predictionを用いた 提案手法が高い精度

PR曲線のA	VUC ,	SBOW L			ink Prediction	
	Weeds	Lin	BInc	Cos	MC	Aug MC
	.147	.149	.165	.150	.174	.187

提案手法

結果: Link prediction

	Hits@1	Hits@10	MR	MRR			
	ALL entities						
ConvE	20.36	47.93	1999.29	29.58			
+ Global MC	20.68	49.13	1012.54	30.19			
+ Global Aug MC	20.64	49.16	987.13	30.19			
	INFREQUENT entities						
ConvE	19.05	45.59	2124.71	27.94			
+ Global MC	19.29	46.60	1154.28	28.41			
+ Global Aug MC	19.28	46.66	1118.09	28.43			

• ConvEにGraph Entailmentの情報を加えて精度向上

解析

Target Triple

John Kerry **nominee for secretary of** state
Lady Gaga **canceled performance** in Hamilton
Dave Toub **considers anyone from** Jon Gruden
Zeke Spruill **traded in exchange for** Justin Upton

Alternative Triple

John Kerry confirmed as secretary of state
Lady Gaga canceled show in Hamilton
Dave Toub considers everyone from Jon Gruden
Justin Upton sent in return for Zeke Spruill

• ターゲットのトリプルではスコアが低かった(<0.05)が, entailするrelationのトリプルでのスコアが高かった(>0.95)ため,正しくリンクできた例

まとめ

- Link predictionとEntailment graph inductionは補完的なタスク
- Entailmentタスクで、link predictionのスコアを利用し、 高い精度

• Link predictionタスクで、Entailmentスコアを利用し、 精度向上

• 二つのタスクを相互に利用することが有用であると示した